
Share Package
—

Unipot

by

Sergei Haller
(Sergei.Haller@math.uni-giessen.de)

Arbeitsgruppe Algebra

Mathematisches Institut, Justus Liebig Universität Giessen
Arndtstr. 2, 35392 Gießen, Germany

Contents

Preface 3

1 The Share Package Unipot 5

1.1 General functionality 5

1.2 Unipotent subgroups of Chevalley
groups 5

1.3 Elements of unipotent subgroups of
Chevalley groups 6

A Installing and Loading unipot 11

A.1 Overview 11

A.2 What you need to install unipot . 11

A.3 Getting and unpacking the sources . 11

A.4 Installing in a different than the
standard location 12

A.5 Loading unipot in GAP 12

Bibliography 13

Preface

Unipot is a share package for GAP4 [GAP4]. This package is the content of my diploma thesis [SH2000].

Let U be a unipotent subgroup of a Chevalley group of Type L(K). Then it is generated by the elements
xr (t) for all r ∈ Φ+, t ∈ K . The roots of the underlying root system Φ are ordered according to the height
function. Each element of U is a product of the root elements xr (t). By the Theorem 5.3.3 from [Carter72]
each element of U can be uniquely written as a product of root elements with roots in increasing order. This
unique form is called the canonical form.

The main purpose of this package is to compute the canonical form of an element of the group U . For
we have implemented the unipotent subgroups of Chevalley groups and their elements as GAP objects and
installed some operations for them. One method for the operation Comm uses the Chevalley’s commutator
formula, which we have implemented, too.

1I Root Systems

We are using the root systems and the structure constants available in GAP via the simple Lie algebras. We
also are using the ordering of roots available in GAP.

Note that the structure constants in GAP4.1 are not generated corresponding to a Chevalley basis, so
computations in the groups of type Bl may produce an error and computations in groups of types Bl ,Cl
and F4 may lead to wrong results. In the groups of other types we haven’t seen any wrong results but can
not guarantee that all results are correct.

In the revision 4.2 of GAP the structure constants are generated corresponding to a Chevalley basis, so that
they meet all our assumtions.

Therefore the share package requires the revision 4.2 of GAP.

2I Future of ‘unipot’

In one of the future versions of the share package unipot we plan to implement some other features. Here
is a small list of them:

– GAP4.2 provides special root system objects. We should use them.

– Provide some root systems in common notations (like Carter or Bourbaki).

– Allow the user to provide his own table of structure constants.

– Provide whole Chevalley groups as GAP objects

– Provide root subgroups

– The elements of Chevalley groups should act on the underlying simple Lie algebra as automorphisms

– There are many known properties of the Chevalley groups and their unipotent subgroups like simplicity,
central series, etc. Implement them.

3I Citation

If you use unipot to solve a problem or publish some result that was partly obtained using unipot, I would
appreciate it if you would cite unipot, just as you would cite another paper that you used. (Below is a
sample citation.) Again I would appreciate if you could inform me about such a paper.

4 Preface

Specifically, please refer to:

[Hal00] Sergei Haller. Unipot --- a system for computing with elements
of unipotent subgroups of Chevalley groups, Version 1.1.
Justus-Liebig Universitaet Giessen, Germany, July 2000.
(ftp://ftp-pclabor.hrz.uni-giessen.de/SHadow/unipot/)

(Should the reference style require full addresses please use: “Arbeitsgruppe Algebra, Mathematisches In-
stitut, Justus-Liebig Universität Gießen, Arndtstr. 2, 35392 Gießen, Germany”)

1

The Share
Package Unipot

This chapter describes the share package unipot. This share package provides the ability to compute with
elements of unipotent subgroups of Chevalley groups.
In this chapter we will refer to unipotent subgroups of Chevalley groups as “unipotent subgroups” and to
elements of unipotent subgroups as “unipotent elements”.

1.1 General functionality

In this section we will describe the general functionality provided by this package.

1I UnipotChevInfo() I

UnipotChevInfo is an InfoClass used in this package. InfoLevel of this InfoClass is set to 1 by default.

1.2 Unipotent subgroups of Chevalley groups

In this section we will describe the functionality for unipotent subgroups provided by this package.

1I IsUnipotChevSubGr C

Category for unipotent subgroups.

2I UnipotChevSubGr(type, n, F) F

UnipotChevSubGr returns the unipotent subgroup U of the Chevalley group of type type, rank n over the
ring F .
type must be one of “A”, “B”, “C”, “D”, “E”, “F”, “G”
For the types A to D, n must be a positive integer.
For the type E, n must be one of 6, 7, 8.
For the type F, n must be 4.
For the type G, n must be 2.

gap> U_G2 := UnipotChevSubGr("G", 2, Rationals);
<Unipotent subgroup of a Chevalley group of type G2 over Rationals>

gap> U_E3 := UnipotChevSubGr("E", 3, Rationals);
Error <n> must be one of 6, 7, 8 for type E at
Error("<n> must be one of 6, 7, 8 for type E ");
UnipotChevFamily(type, n, F) called from
<function>(<arguments>) called from read-eval-loop
Entering break read-eval-print loop, you can ’quit;’ to quit to outer loop,
or you can return to continue
brk>

3I PrintObj(U) M
I ViewObj(U) M

Special methods for unipotent subgroups. (see GAP Reference Manual, section “ref:view and print” for
general information on View and Print)

6 Chapter 1. The Share Package Unipot

gap> Print(U_G2);
UnipotChevSubGr("G", 2, Rationals)gap> View(U_G2);
<Unipotent subgroup of a Chevalley group of type G2 over Rationals>

4I One(U) M
I OneOp(U) M

Special methods for unipotent subgroups. Return the identity of U .

5I Size(U) M

Size returns the size of a unipotent subgroup. This is a special method for unipotent subgroups.

Size can be computed using the result in Carter [Carter72], Theorem 5.3.3 (ii).

6I RootSystem(U) M

This method is similar to the method RootSystem for semisimple Lie algebras (see GAP4.1 Reference Manual,
section 58.7 for further information). RootSystem calculates the root system of the unipotent subgroup U .
The output is a record with the following components:

- fundroots A set of fundamental roots

- posroots The set of positive roots of the root system. The positive roots are listed according to in-
creasing height .

gap> RootSystem(U_G2);
rec(posroots := [[2, -1], [-3, 2], [-1, 1], [1, 0], [3, -1], [0, 1]],

fundroots := [[2, -1], [-3, 2]])
gap>

1.3 Elements of unipotent subgroups of Chevalley groups

In this section we will describe the functionality for unipotent elements provided by this package.

1I IsUnipotChevElem C

Category for elements of a unipotent subgroup.

2I IsUnipotChevRepByRootNumbers R
I IsUnipotChevRepByFundamentalCoeffs R
I IsUnipotChevRepByRoots R

IsUnipotChevRepByRootNumbers, IsUnipotChevRepByFundamentalCoeffs and IsUnipotChevRepByRoots
are different representations for unipotent elements.

Roots of elements with representation IsUnipotChevRepByRootNumbers are represented by their numbers
(positions) in RootSystem(U).posroots.

Roots of elements with representation IsUnipotChevRepByFundamentalCoeffs are represented by coeffi-
cients of linear combinations of fundamental roots RootSystem(U).fundroots.

Roots of elements with representation IsUnipotChevRepByRoots are represented by roots themself.

(See 1.3.3, 1.3.4 and 1.3.5 for examples)

3I UnipotChevElemByRootNumbers(U , list) O
I UnipotChevElemByRootNumbers(U , r, x) O
I UnipotChevElemByRN(U , list) O
I UnipotChevElemByRN(U , r, x) O

UnipotChevElemByRootNumbers returns an element of a unipotent subgroup U with representation IsUnipot-
ChevRepByRootNumbers (see 1.3.2).

Section 3. Elements of unipotent subgroups of Chevalley groups 7

list should be a list of records with components r and x representing the number of the root in RootSys-
tem(U).posroots and a ring element, respectively.

The second variant of UnipotChevElemByRootNumbers is an abbreviation for the first one if list contains
only one record.

UnipotChevElemByRN is a synonym for UnipotChevElemByRootNumbers.

gap> IsIdenticalObj(UnipotChevElemByRN, UnipotChevElemByRootNumbers);
true
gap> y := UnipotChevElemByRootNumbers(U_G2, [rec(r:=1, x:=2), rec(r:=5, x:=7)]);
x_{1}(2) * x_{5}(7)
gap> x := UnipotChevElemByRootNumbers(U_G2, 1, 2);
x_{1}(2)

In this example we create two elements: xr1(2) · xr5(7) and xr1(2), where ri , i = 1, . . . , 6 are the positive roots
in RootSystem(U).posroots and xri (t), i = 1, . . . , 6 the corresponding root elements.

4I UnipotChevElemByFundamentalCoeffs(U , list) O
I UnipotChevElemByFundamentalCoeffs(U , coeffs, x) O
I UnipotChevElemByFC(U , list) O
I UnipotChevElemByFC(U , coeffs, x) O

UnipotChevElemByFundamentalCoeffs returns an element of a unipotent subgroup U with representation
IsUnipotChevRepByFundamentalCoeffs (see 1.3.2).

list should be a list of records with components coeffs and x representing a root in RootSystem(U).posroots
as coefficients of a linear combination of fundamental roots RootSystem(U).fundroots and a ring element,
respectively.

The second variant of UnipotChevElemByFundamentalCoeffs is an abbreviation for the first one if list
contains only one record.

UnipotChevElemByFC is a synonym for UnipotChevElemByFundamentalCoeffs.

gap> y1 := UnipotChevElemByFundamentalCoeffs(U_G2,
> [rec(coeffs := [1, 0], x := 2),
> rec(coeffs := [3, 1], x := 7)]);
x_{[1, 0]}(2) * x_{[3, 1]}(7)
gap> x1 := UnipotChevElemByFundamentalCoeffs(U_G2, [1, 0], 2);
x_{[1, 0]}(2)

In this example we create the same two elements as in 1.3.3: x[1,0](2) · x[3,1](7) and x[1,0](2), where [1, 0] =
1r1+0r2 = r1 and [3, 1] = 3r1+1r2 = r5 are the first and the fifth positive roots of RootSystem(U).posroots
respectively.

5I UnipotChevElemByRoots(U , list) O
I UnipotChevElemByRoots(U , r, x) O
I UnipotChevElemByR(U , list) O
I UnipotChevElemByR(U , r, x) O

UnipotChevElemByRoots returns an element of a unipotent subgroup U with representation IsUnipotChev-
RepByRoots (see 1.3.2).

list should be a list of records with components r and x representing the root in RootSystem(U).posroots
and a ring element, respectively.

The second variant of UnipotChevElemByRoots is an abbreviation for the first one if list contains only one
record.

8 Chapter 1. The Share Package Unipot

UnipotChevElemByR is a synonym for UnipotChevElemByRoots.

gap> y2 := UnipotChevElemByRoots(U_G2,
> [rec(r := [2, -1], x := 2),
> rec(r := [3, -1], x := 7)]);
x_{[2, -1]}(2) * x_{[3, -1]}(7)
gap> x2 := UnipotChevElemByRoots(U_G2, [2, -1], 2);
x_{[2, -1]}(2)

In this example we create again the two elements as in previous examples: x[2,−1](2) ·x[3,−1](7) and x[2,−1](2),
where [2,−1] = r1 and [3,−1] = r5 are the first and the fifth positive roots of RootSystem(U).posroots
respectively.

6I UnipotChevElemByRootNumbers(x) O
I UnipotChevElemByFundamentalCoeffs(x) O
I UnipotChevElemByRoots(x) O

UnipotChevElemByRootNumbers is provided for converting elements to the representation IsUnipotChev-
RepByRootNumbers. If x has already the representation IsUnipotChevRepByRootNumbers, then x itself is
returned. Otherwise a new element with representation IsUnipotChevRepByRootNumbers is generated.

UnipotChevElemByFundamentalCoeffs and UnipotChevElemByRoots do the same for the representations
IsUnipotChevRepByFundamentalCoeffs and IsUnipotChevRepByRoots, respectively.

gap> x;
x_{1}(2)
gap> x1 := UnipotChevElemByFundamentalCoeffs(x);
x_{[1, 0]}(2)
gap> IsIdenticalObj(x, x1); x = x1;
false
true
gap> x2 := UnipotChevElemByFundamentalCoeffs(x1);;
gap> IsIdenticalObj(x1, x2);
true

Note: If some attributes of x are known (e.g Inverse (see 1.3.13), CanonicalForm (see 1.3.7)), then they
are “converted” to the new representation, too.

7I CanonicalForm(x) A

CanonicalForm returns the canonical form of x . For more information on the canonical form see Carter
[Carter72], Theorem 5.3.3 (ii). It says:

Each element of a unipotent subgroup U of a Chevalley group with root system Φ is uniquely expressible
in the form ∏

ri∈Φ+

xri (ti),

where the product is taken over all positive roots in increasing order.

gap> z := UnipotChevElemByFC(U_G2,
> [rec(coeffs := [0,1], x := 3),
> rec(coeffs := [1,0], x := 2)]);
x_{[0, 1]}(3) * x_{[1, 0]}(2)
gap> CanonicalForm(z);
x_{[1, 0]}(2) * x_{[0, 1]}(3) * x_{[1, 1]}(6) *
x_{[2, 1]}(12) * x_{[3, 1]}(24) * x_{[3, 2]}(-72)

Section 3. Elements of unipotent subgroups of Chevalley groups 9

8I PrintObj(x) M
I ViewObj(x) M

Special methods for unipotent elements. (see GAP Reference Manual, section “ref:view and print” for general
information on View and Print)

gap> Print(x);
UnipotChevElemByRootNumbers(UnipotChevSubGr("G", 2, Rationals), [rec(

r := 1,
x := 2)])gap> View(x);

x_{1}(2)

gap> Print(x1);
UnipotChevElemByFundamentalCoeffs(UnipotChevSubGr("G", 2, Rationals),
[rec(

coeffs := [1, 0],
x := 2)])gap> View(x1);

x_{[1, 0]}(2)

9I ShallowCopy(x) M

This is a special method for unipotent elements.

ShallowCopy creates a copy of x . The returned object is not identical to x but it is equal to x w.r.t. the
equality operator =. Note that CanonicalForm and Inverse of x (if known) are identical to CanonicalForm
and Inverse of the returned object.

(See GAP Reference Manual, section “ref:duplication of objects” for further information on copyability)

10I x = y M

Special method for unipotent elements. If x and y are identical or are products of the same root elements
then true is returned. Otherwise CanonicalForm (see 1.3.7) of both arguments must be computed (if not
already known), which may be expensive.

gap> y := UnipotChevElemByRootNumbers(U_G2, [rec(
> r := 1,
> x := 2), rec(
> r := 5,
> x := 7)]);
x_{1}(2) * x_{5}(7)
gap>
gap> z := UnipotChevElemByRootNumbers(U_G2, [rec(
> r := 5,
> x := 7), rec(
> r := 1,
> x := 2)]);
x_{5}(7) * x_{1}(2)
gap> y=z;
#I CanonicalForm for the 1st argument is not known.
#I computing it may take a while.
#I CanonicalForm for the 2nd argument is not known.
#I computing it may take a while.
true
gap>

10 Chapter 1. The Share Package Unipot

11I x * y M

Special method for unipotent elements. The expressions in the form xr (t)xr (u) will be reduced to xr (t + u)
whenever possible.

gap> y;z;
x_{1}(2) * x_{5}(7)
x_{5}(7) * x_{1}(2)
gap> y*z;
x_{1}(2) * x_{5}(14) * x_{1}(2)

Note: If both arguments have the same representation, the product will have it too. But if the representations
are different, the representation of the first argument will become the representation of the product.

gap> x; x1; x=x1;
x_{1}(2)
x_{[1, 0]}(2)
true
gap> x * x1;
x_{1}(4)
gap> x1 * x;
x_{[1, 0]}(4)

12I OneOp(x) M

Special method for unipotent elements. OneOp returns the multiplicative neutral element of x . This is equal
to xˆ0.

13I Inverse(x) M
I InverseOp(x) M

Special methods for unipotent elements. We are using the fact(
xr1(t1) · · · xrm (tm)

)−1

= xrm (−tm) · · · xr1(−t1).

14I Comm(x, y) M
I Comm(x, y, "canonical") M

Special methods for unipotent elements.

Comm returns the commutator of x and y , i.e. x−1 · y−1 · x · y . The second variant returns the canonical form
of the commutator. In some cases it may be more efficient than CanonicalForm(Comm(x, y))

15I IsRootElement(x) P

IsRootElement returns true if and only if x is a root element , i.e x = xr (t) for some root r . We store this
property just after creating objects.

Note: the canonical form of x may be a root element even if x isn’t one.

A

Installing and
Loading unipot

This appendix describes the procedure of installing the share package

Installing unipot should be easy once you have installed GAP itself. We assume here that you want to install
unipot in its standard location, which is in the “pkg” subdirectory of the main GAP4 installation.

A.1 Overview

You have to perform the following steps to install unipot:

– Get the sources.

– Unpack the sources with the unzoo utility.

– Optionally edit the ALLPKG file so that the unipot documentation will be available when GAP starts
up.

A.2 What you need to install unipot

Being a share package for GAP4 and implemented in the GAP4 language, unipot of course needs at least GAP
version 4.2. (See Preface.1 why you shouldn’t use it with GAP4.1.) Unipot runs on any system supporting
GAP4. It is tested with GAP4.2, but should work with any non-beta version of GAP4 (with exceptions stated
in Preface.1 for GAP4.1).

A.3 Getting and unpacking the sources

You can download the sources from the same places as GAP. So the main FTP servers are:

ftp://ftp-gap.dcs.st-and.ac.uk/pub/gap/gap4/
ftp://ftp.math.rwth-aachen.de/pub/gap4/
ftp://ftp.ccs.neu.edu/pub/mirrors/ftp-gap.dcs.st-and.ac.uk/pub/gap/gap4/
ftp://pell.anu.edu.au/pub/algebra/gap4/

You need only one file with the name “unipot1r1.zoo” which is in the subdirectory for the share packages.
When you installed GAP you used the utility unzoo to unpack the distribution. You will need this here again.
See the GAP-manual, chapter “ref:installing gap” for instructions on how to get and compile this. You now
change your current directory to the “pkg” subdirectory of the location where you installed GAP (you typed
an unzoo-command, then a new directory called “gap4” or something like that was created, this directory
contains the “pkg” subdirectory). The standard location would be: (do not type the prompt character #)

cd /usr/local/lib/gap4/pkg

Now you extract the sources for the unipot share package:

12 Appendix A. Installing and Loading unipot

unzoo -x unipot1r1.zoo
unipot/README -- extracted as text
...
/bin/mkdir: cannot make directory ‘unipot’: File exists
...

Note that the warning is not serious.

The unzoo utility unpacks the files and stores them into the apropriate subdirectories. unipot resides
completely in the following subdirectory (assuming standard location):

/usr/local/lib/gap4/pkg/unipot

A.4 Installing in a different than the standard location

It could happen that you do not want to install unipot in its standard location, perhaps because you do
not want to bother your system administrator and have no access to the GAP directory. In this case you
can unpack unipot in any other location within a “pkg” directory with the unzoo command as described
above. Let us call this directory “pkg” for the moment. You get an “unipot” subdirectory with all the files
of unipot in it. Then you follow the standard procedure with following exceptions:

Say, the directory containing the “pkg” directory is “/home/user/mygap”. Note that you have either to
edit the startup script “gap.sh”: Add “/home/user/mygap” separating it with semicolon ; from previous
directories for the variable “GAP DIR”. Or you have to start GAP with following command line option:

gap4 -l "/usr/local/lib/gap4;/home/user/mygap"

A.5 Loading unipot in GAP

Add a line to the “ALLPKG” file in the “pkg” directory

cd /name-of-gap-directory/pkg
echo unipot >> ALLPKG

This makes the documentation of the package available in any GAP4 session, even if the package is not
loaded. Like any other share package, unipot is loaded in GAP with

gap> RequirePackage("unipot");

within the GAP4 session.

If you have problems with this package, wish to make comments or suggestions, or if you find bugs, please
send e-mail to me.

Sergei Haller, mailto:Sergei.Haller@math.uni-giessen.de

Also, I would like to hear about applications of this package. (See Preface.3)

Bibliography

	Contents
	Preface
	The Share Package Unipot
	General functionality
	Unipotent subgroups of Chevalley groups
	Elements of unipotent subgroups of Chevalley groups

	Installing and Loading unipot
	Overview
	What you need to install unipot
	Getting and unpacking the sources
	Installing in a different than the standard location
	Loading unipot in GAP
	Bibliography
	Index

